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Abstract. We present an infinitary logic ACTω in the form of a Gentzen-style sequent system,
which is equivalent to the equational theory of ∗-continuous action lattices [9]. We prove the
cut-elimination theorem for ACTω and, as a consequence, a theorem on the elimination of nega-
tive occurrences of ∗. This shows that ACTω is Π0

1, whence, by a result of Buszkowski [1], it is
Π0

1−complete.
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1. Introduction

Kozen [4] introduces Kleene algebras as an algebraic counterpart of regular algebras. The Kozen com-
pleteness theorem states that α = β is true for regular expressions iff α = β is valid in Kleene algebras.
Kleene algebras do not form a variety, and it is known that the equations true for regular expressions
cannot be axiomatized by any finite number of equations [10].

Pratt [9] defines action algebras as Kleene algebras with residuals. In the language without residuals,
the equations valid in action algebras are the same as those valid in Kleene algebras. Action algebras
form a finitely based variety; this is also true for action lattices, e.g action algebras admitting the meet
operation ∧.

On the other hand, many basic properties of action algebras are different from properties of Kleene
algebras. While the equational theory of Kleene algebras is decidable (PSPACE-complete), the complex-
ity of the equational theory of action algebras is not known [2], [1]. Every complete action algebra is
∗The author thanks Prof. Wojciech Buszkowski for the supervision of this research and helpful suggestions.
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∗-continuous, which is not true for Kleene algebras [1]. The equational theory of ∗-continuous Kleene al-
gebras equals the one of all Kleene algebras, whence it is decidable. It is shown in [1] that the equational
theory of ∗-continuous action algebras (lattices) is Π0

1-hard, whence it is not recursively enumerable and
cannot be equal to the one of all action algebras (lattices). The latter does not possess FMP (finite model
property), but the former possesses FMP [1]. In [8] it is shown that the equational theory of Kleene
algebras possesses FMP.

In this paper we consider an axiomatization of the equational theory of ∗-continuous action lattices
in the form of a Gentzen-style sequent system. This system extends Full Lambek Calculus (FL) in the
sense of Ono [7], Jipsen [2], by some axioms and rules for ∗. (FL corresponds to the equational theory
of residuated lattices). The left-introduction rule for ∗ is an infinitary rule (rule (ω)); from the infinite set
of premises Γ1, A

n,Γ2 ⇒ B, for all n ∈ ω, one infers Γ1, A
∗,Γ2 ⇒ B. Accordingly, the logic is an

infinitary logic; we denote it by ACTω.
In section 3 we prove the cut-elimination theorem for ACTω, by a transfinite induction on ranks of

provable sequents. This strengthens several results on cut-elimination for finitary systems contained in
ACTω, e.g. FL [7] and the Lambek calculus [6].

In section 4 we prove that ACTω is complete with respect to the class of ∗-continuous action lattices.
We also define and study syntatic operations Pn, An, (n ∈ ω), which transform any formula A into a
formula Pn(A) (resp. Nn(A)) without positive (resp. negative) occurrences of ∗. For a sequent Γ⇒ A,
Nn(Γ⇒ A) is defined as the sequent Pn(Γ)⇒ Nn(A); it contains no negative occurrences of ∗. Several
lemmas show how are these operations related to axioms and inference rules of ACTω.

In section 5 we prove the main result of this paper: the ∗-elimination theorem. According to the
theorem, Γ ⇒ A is provable in ACTω iff, for all n ∈ ω, Nn(Γ ⇒ A) is provable in ACTω. Since
Nn(Γ ⇒ A) contains no negative occurrences of ∗, then it is provable in ACTω iff it is provable in
ACTω without the rule (ω). The latter system is a finitary cut-free sequent system, which admits an
effective proof-search procedure, and consequently, it is decidable. Then, ACTω is Π0

1. Together with
the Π0

1-hardness of ACTω [1], this yields the Π0
1-completeness of ACTω.

2. Preliminaries

This chapter presents some preliminaries. We define a Kleene algebra, an action lattice and a ∗-continuous
action lattice.
A Kleene algebra [4] is an algebraic structureA=(A,+, ·, ∗, 0, 1) with two distinguished elements 0 and
1, two binary operations + and ·, and a unary operation ∗ satisfying the following axioms.

a + (b + c) = (a + b) + c (1)

a + b = b + a (2)

a + 0 = a (3)

a + a = a (4)

a(bc) = (ab)c (5)

1a = a (6)

a1 = a (7)
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a(b + c) = ab + ac (8)

(a + b)c = ac + bc (9)

0a = 0 (10)

a0 = 0 (11)

1 + aa∗ ≤ a∗ (12)

1 + a∗a ≤ a∗ (13)

if ax ≤ x then a∗x ≤ x (14)

if xa ≤ x then xa∗ ≤ x (15)

where ≤ denotes the partial order on A, defined as follows:

a ≤ b⇔ a + b = b (16)

Axioms (1)-(4) say that (A,+, 0) is an idempotent commutative monoid, and axioms (5)-(7) say that
(A, ·, 1) is a monoid. Note that axioms (12)-(15) say, essentialy, that the operation ∗ behaves like the
asterate operator on sets of strings or the reflexive transitive closure operator on binary relations. The
following properties are true in all Kleene algebras:

1 ≤ a∗ (17)

a ≤ a∗ (18)

if a ≤ b and c ≤ d then ac ≤ bd (19)

a ≤ x and b ≤ x iff a + b ≤ x (20)

A standard Kleene algebra is the algebra of languages on a finite alphabet Σ. A language on Σ is a
set of finite strings on Σ. The largest language on Σ is denoted Σ∗. The empty string is denoted ε. For
L,L1, L2 ⊆ Σ∗, one sets: L1 ∨ L2 = L1 ∪ L2, L1 · L2 = {xy : x ∈ L1, y ∈ L2}, L∗ =

⋃
n∈ω Ln,

0 = Ø, 1 = {ε}, where L0 = 1, Ln+1 = LnL. Another example is the algebra of all binary relations
on a set U . Now, product is relational product, 1 is the identity relation, and the remaining notions are
defined as above.

A Kleene algebra A is said to be ∗-continuous, if xa∗y = sup{xany : n ∈ ω}, for all x, y, a ∈ A.
Clearly, the algebra of languages and the algebra of relations are ∗-continuous.

Regular expressions on Σ are variable-free terms of the (first-order) language of Kleene algebras
enriched with all symbols from Σ as new individual constants. For a ∈ Σ, one sets L(a) = {a} and
extends the mapping L to a (unique) homomorphism from the (variable-free) term algebra to the algebra
of languages on Σ. For a regular expression α, the language L(α) is called the language denoted by α.
The equality α = β is said to be true for regular expressions, if L(α) = L(β).

Pratt [9] defines an action algebra as an algebra A=(A,+, ·, ∗,→,←, 0, 1) such that +,·,∗,0,1 are as
above, and→,← are binary operations on A, which satisfy axioms (1)-(7) and the following:

a ≤ c← b iff ab ≤ c iff b ≤ a→ c (21)
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1 + a∗a∗ + a ≤ a∗ (22)

if 1 + bb + a ≤ b then a∗ ≤ b (23)

where the relation ≤ is as above. Operations → and ← are called the right residuation and the left
residuation, respectively. We use (RES) to denote the axiom (21). Pratt [9] shows that every action
algebra is a Kleene algebra. An action algebra is ∗-continuous iff a∗ = sup{an : n ∈ ω}. Pratt [9]
proves that action algebras form a finitely based variety.

An action lattice is an action algebra which is a lattice, this means, it admits a meet operation ∧,
satisfying axioms (1)-(3) with + replaced by ∧ (called the semilattice axioms) and the absorption axioms
a + (a ∧ b) = a, a ∧ (a + b) = a. Some results on action lattices can be found in Kozen [5].

The algebra of languages can be expanded to an action lattice by setting L1 ∧ L2 = L1 ∩ L2 and:

L1 → L2 = {x ∈ Σ∗ : L1{x} ⊆ L2}
L1 ← L2 = {x ∈ Σ∗ : {x}L2 ⊆ L1}.

Regular languages on Σ, i.e. languages denoted by regular expressions on Σ, form a subalgebra of this
action lattice. The algebra of relations on U can also be expanded to an action lattice with the meet
defined as the set-theoretic intersection and residuals defined as follows:

R1 → R2 = {(x, y) ∈ U2 : R1 ◦ {(x, y)} ⊆ R2}
R1 ← R2 = {(x, y) ∈ U2 : {(x, y)} ◦R2 ⊆ R1}.

We consider an infinitary logic ACTω which is complete with respect to ∗-continuous action lattices.
This logic is formalized as a Gentzen-style sequent system. It amounts to an extension of Full Lambek
Calculus (FL) in the sense of [7], [2] by axioms and inference rules concerning ∗. Atomic formulas of
ACTω are variables and constants 0 and 1. Formulas of ACTω are formed out of atomic formulas by
means of the connectives ∗, ; ,→,←,∨,∧. We use characters p, q for variables and A,B, C for formulas.
Greek capitals Γ,Φ,Ψ represent finite strings of formulas. Sequents are expressions of the form Γ⇒ A.
The axioms of ACTω are:

(Id) A⇒ A, (0L) Γ1, 0,Γ2 ⇒ A, (1R)⇒ 1, (∗1R)⇒ A∗

and the inference rules are the following:

(1L)
Γ1,Γ2 ⇒ A

Γ1, 1,Γ2 ⇒ A
,

(∧1L)
Γ1, A, Γ2 ⇒ C

Γ1, A ∧B, Γ2 ⇒ C
, (∧2L)

Γ1, B, Γ2 ⇒ C

Γ1, A ∧B, Γ2 ⇒ C
,

(∧R)
Γ⇒ A Γ⇒ B

Γ⇒ A ∧B
,

(∨L)
Γ1, A, Γ2 ⇒ C Γ1, B, Γ2 ⇒ C

Γ1, (A ∨B),Γ2 ⇒ C
,

(∨1R)
Γ⇒ A

Γ⇒ A ∨B
, (∨2R)

Γ⇒ B

Γ⇒ A ∨B
,

(;L)
Γ1, A, B, Γ2 ⇒ C

Γ1, A;B, Γ2 ⇒ C
, (;R)

Γ1 ⇒ A Γ2 ⇒ B

Γ1,Γ2 ⇒ A;B
,
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(→ R)
A,Γ⇒ B

Γ⇒ A→ B
, (← R)

Γ, A⇒ B

Γ⇒ B ← A
,

(→ L)
Γ⇒ A Γ1, B, Γ2 ⇒ C

Γ1,Γ, A→ B, Γ2 ⇒ C
, (← L)

Γ⇒ A Γ1, B, Γ2 ⇒ C

Γ1, B ← A, Γ,Γ2 ⇒ C
,

(∗2R)
Γ1 ⇒ A, . . . ,Γn ⇒ A

Γ1, . . . ,Γn ⇒ A∗ for any n ≥ 1,

(∗L)
(Γ1, A

n,Γ2 ⇒ B)n∈ω

Γ1, A∗,Γ2 ⇒ B
.

(∗2R) is an infinite family of finary rules. (∗L) is an infinitary rule. We use (ω) to denote the rule (∗L).
Here An stands for the string of n copies of A, A0 is the empty string. (∗1R) can be treated as an
additional instance of (∗2R) for n = 0. (ω) together with (∗2R) express ∗-continuity. In the next section
we prove that ACTω admits cut-elimination, this means, the set of provable sequents is closed under the
rule:

(CUT)
Γ⇒ A Γ1, A, Γ2 ⇒ B

Γ1,Γ,Γ2 ⇒ B
.

For some finitary fragments of ACTω, the cut-elimination theorem has been proved by Lambek [6] and
Ono [7].

Let A be an action lattice. Homomorphisms from the free algebra of formulas to A are called
assignments in A. One sets f(A;B) = f(A) · f(B). Assignments are extended to string of formulas by
setting:

f(ε) = 1, f(A1, . . . , An) = f(A1) · . . . · f(An).

A sequent Γ⇒ A is said to be true in model (A, f) if f(Γ) ≤ f(A), and valid inA, if it is true in (A, f)
for any assignment f .
By ACT− we denote the system ACTω without the rule (ω). ACT denotes the set of sequents valid in
all action lattices. Clearly, ACT− ⊂ ACT ⊂ ACTω. We will show that both inclusions are strict.

A sequent Γ ⇒ A expresses a formula s ≤ t of the first-order language of action lattices (s, t are
terms), so it expresses an equation s ∨ t = t. Conversely, any equation s = t is equivalent to s ≤ t
and t ≤ s, whence it can be expressed by two sequents. Therefore, ACTω is an axiom system for the
equational theory of ∗-continuous action lattices.

In this paper `ACTω Γ⇒ A will mean that Γ⇒ A is provable in ACTω.

3. The cut-elimination theorem

Our purpose is to prove the cut-elimination theorem for ACTω.
We define a transfinite chain Sα of sets of sequents. Let S0 be the set of all axiomatic sequents. We

set:

Sα+1 = Sα ∪ {Γ⇒ A : Γ⇒ A is the conclusion of some rule whose all premises belong to Sα}.

For limit ordinals λ we set:
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Sλ =
⋃

α<λ Sα

Then, Sω1 =
⋃

α<ω1
Sα is the set of all provable sequents.

The ordinal r(Γ⇒ A) = min{α : (Γ⇒ A) ∈ Sα} is called the rank of a provable sequent Γ⇒ A.

Theorem 3.1. [the cut-elimination theorem]
The set of sequents provable in ACTω is closed under (CUT).

Proof:
We show that the rule (CUT) is admissible in the system ACTω, this means

if `ACTω Ψ⇒ C and `ACTω Φ1, C,Φ2 ⇒ D, then `ACTω Φ1,Ψ,Φ2 ⇒ D (24)

We use the following fact: if Γ ⇒ A is a provable sequent of rank α, then it is an axiom or the
conclusion of an inference rule whose every premise is of a rank less than α.
We proceed by a triple induction:

(1) on the complexity of C,
(2) on the rank of the right premise of (CUT): Φ1, C, Φ2 ⇒ D,
(3) on the rank of the left premise of (CUT): Ψ⇒ C.

We switch on induction (1). We consider some interesting cases. In each case, if either Ψ ⇒ C, or
Φ1, C, Φ2 ⇒ D is an axiom (Id), then the conclusion of (CUT) coincides with one of the premises of
(CUT). If Ψ⇒ C is an axiom (0L), then the conclusion of (CUT) is so.

Case 1. C ≡ A∗. We switch on induction (2). There is one interesting case: if Φ1, A
∗,Φ2 ⇒ D is

the conclusion of rule (ω) introducing A∗, then we switch on induction (3). There are three interesting
cases: (A) Ψ ⇒ C is an axiom (∗1R), (B) Ψ ⇒ C is the conclusion of (∗2R), (C): Ψ ⇒ C is the
conclusion of (ω). For (A), Ψ = ε, then Φ1,Ψ,Φ2 ⇒ D is one of premises of (ω). For (B), the
premises of this rule are Ψ1 ⇒ A, . . . ,Ψn ⇒ A, where Ψ = Ψ1 · · ·Ψn. But one of premises of (ω) is
Φ1, A

n,Φ2 ⇒ D. Applying n times the hypothesis of induction (1) we get Φ1,Ψ1, . . . ,Ψn,Φ2 ⇒ D,
which is the conclusion of (CUT). For (C), the premises of this rule are Ψ1, B

n,Ψ2 ⇒ C, for any n ∈ ω,
where Ψ = Ψ1B

∗Ψ2. By induction (3), the sequents Φ1,Ψ1, B
n,Ψ2,Φ2 ⇒ D are provable, for any

n ∈ ω. By (ω), `ACTω Φ1,Ψ1, B
∗,Ψ2,Φ2 ⇒ D, which is the conclusion of (CUT).

Case 2. C ≡ A1;A2. We switch on induction (2). There are three interesting cases: (A) Φ1, C, Φ2 ⇒
D is the conclusion of (∗2R), (B) Φ1, C, Φ2 ⇒ D is the conclusion of (ω), (C) Φ1, C, Φ2 ⇒ D is the con-
clusion of (;L) introducing C. For (A), C has to be in some of the premises of the (∗2R)-rule. The premises
are Γ1 ⇒ A, . . . ,Γn ⇒ A, where Φ1CΦ2 = Γ1 . . .Γn and D = A∗. Then, for some i, Γi is of the form
Γ

′
iCΓ

′′
i . By induction (2), `ACTω Γ

′
i,Ψ,Γ

′′
i ⇒ A. Whence, by (∗2R), we obtain `ACTω Φ1,Ψ,Φ2 ⇒ D.

For (B), the premises are of the form Γ1, A
n,Γ2 ⇒ D for any n ∈ ω, where Φ1CΦ2 = Γ1A

∗Γ2. Then
the formula C is in Γ1 or Γ2, since C 6= A∗. Consider the first case. We have Γ1 = Γ

′
1CΓ

′′
1 . We know that

each of the sequents Γ1, A
n,Γ2 ⇒ D have a rank smaller than Φ1, C, Φ2 ⇒ D. By the second induction,

`ACTω Γ
′
1,Ψ,Γ

′′
1 , An,Γ2 ⇒ D, for every n ∈ ω. By (ω), we get `ACTω Γ

′
1,Ψ,Γ

′′
1 , A∗,Γ2 ⇒ D, which

is the conclusion of (CUT). For (C), the premise is Φ1, A1, A2,Φ2 ⇒ D. Then, we switch on induction
(3). There are two interesting subcases: (C.1) Ψ⇒ A1;A2 is the conclusion of (;R), (C.2) Ψ⇒ A1;A2

is the conclusion of (ω). For (C.1), the premises are Ψ1 ⇒ A1, Ψ2 ⇒ A2, where Ψ = Ψ1Ψ2. By the
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first induction, we get `ACTω Φ1,Ψ1, A2,Φ2 ⇒ D, and then `ACTω Φ1,Ψ1,Ψ2,Φ2 ⇒ D, which is the
conclusion of (CUT). For (C.2), the premises are Ψ1, A

n,Ψ2 ⇒ C, for any n ∈ ω, where Ψ = Ψ1A
∗Ψ2.

By induction (3), the sequents Φ1,Ψ1, A
n,Ψ2,Φ2 ⇒ D are provable in ACTω, for any n ∈ ω. By (ω),

we have `ACTω Φ1,Ψ1, A
∗,Ψ2,Φ2 ⇒ D, which is the conclusion of (CUT).

Case 3. C ≡ A2 ← A1. We switch on induction (2). There is one interesting case: Φ1, C, Φ2 ⇒ D
is the conclusion of the (←L)-rule introducing C. The premises are Φ

′ ⇒ A1 and Φ1, A2,Φ
′′ ⇒ D,

where Φ2 = Φ
′
Φ

′′
. Like in case 2 we switch on induction (3). There is one interesting case when

Ψ ⇒ A2 ← A1 is the conclusion of the (←R)-rule with the premise Ψ, A1 ⇒ A2. By the hypothesis
of induction (1), we get `ACTω Φ1,Ψ, A1,Φ

′′ ⇒ D and `ACTω Φ1,Ψ,Φ
′
,Φ

′′ ⇒ D, which is the
conclusion of (CUT).

Case 4. C ≡ 0. We switch on induction (2). There is one interesting case: Φ1, C, Φ2 ⇒ D is an
axiom (0L). Like in case 2 we switch on induction (3). There is one interestiong subcase when Ψ⇒ 0 is
the conclusion of another rule. We directly apply the hypothesis of induction (3).

Case 5. C ≡ p. We switch on induction (2). There are two interesting cases: (A) Φ1, p,Φ2 ⇒ D is
an axiom (0L), (B) Φ1, p,Φ2 ⇒ D is the conclusion of some rule. For (A), 0 is in Φ1 or Φ2. Consider
the first case. We have Φ1 = Φ

′
0Φ

′′
, so Φ1,Ψ,Φ2 ⇒ D is an axiom (0L). For (B), p appears in some

premise of this rule (in each premise of (ω), (∨L), (∧R)), whence we directly apply the hypothesis of
induction (2) and this rule. ut

4. Infinitary action logic

This section studies some properties of ACTω. We introduce some definitions and lemmas helpful for
proving main theorems of this paper.

Lemma 4.1.

1. `ACTω Φ1, A;B, Φ2 ⇒ C iff `ACTω Φ1, A, B, Φ2 ⇒ C

2. `ACTω Φ1, A ∨B, Φ2 ⇒ C iff `ACTω Φ1, A, Φ2 ⇒ C and
`ACTω Φ1, B, Φ2 ⇒ C

Proof:
The first part holds by (;R), (;L) and (CUT). The second part holds by (∨1R), (∨2R), (∨L) and (CUT).

ut

The following rules are derivable in ACTω:

A⇒ B C ⇒ D

A;C ⇒ B;D
(25)

A⇒ B C ⇒ D

B → C ⇒ A→ D
(26)

A⇒ B C ⇒ D

C ← B ⇒ D ← A
(27)

A⇒ B C ⇒ D

A ∨ C ⇒ B ∨D
(28)
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A⇒ B C ⇒ D

A ∧ C ⇒ B ∧D
(29)

A⇒ B

A∗ ⇒ B∗ (30)

Let us show two of them. We consider (30). By (∗1R) and (∗2R), for any n ∈ ω, we get

A⇒ B, . . . , A⇒ B

An ⇒ B∗

Then, by the rule (ω), A∗ ⇒ B∗. Now let us consider the rule (28). From (∨2R) and (∨1R) we have

A⇒ B

A⇒ B ∨D
and

C ⇒ D

C ⇒ B ∨D
.

Then, A ∨ C ⇒ B ∨D, by (∨L).

We define an equivalence relation ∼ on the algebra of formulas as follows:

A ∼ B iff `ACTω A⇒ B and `ACTω B ⇒ A

where A,B are formulas. By (25)-(30), ∼ is a congruence in this algebra. We construct a quotient
structure M = FOR/ ∼. We set:

[A] = {B : A ∼ B}
M = {[A] : A ∈ FOR}

[A] ∨ [B] = [A ∨B]
[A] ∧ [B] = [A ∧B]
[A] · [B] = [A;B]

[A]→ [B] = [A→ B]
[A]← [B] = [A← B]

([A])∗ = [A∗]
1 = [1]
0 = [0]

We consider the algebraM= (M,∨,∧, ·, ()∗,→,←, 1, 0). It is easy to show thatM is an action lattice.
We define an assignment µ : FOR→M such that µ(A) = [A] for A ∈ FOR.

Theorem 4.1. The sequents provable in ACTω are precisely the sequents true in all ∗-continuous action
lattices.

Proof:
(⇒) If `ACTω Γ⇒ A, then Γ⇒ A is true in all ∗-continuous action lattices. It is easy to see that axioms
and all rules except (ω) are true in all action lattices. The rule (ω) is true in any ∗-continuous action
lattice, because we have the following condition:

if (xany ≤ z, for any n ∈ ω), then xa∗y ≤ z

(⇐) In the quotient structureM, defined above, we have [A] ≤ [B] iff [A]∨ [B] = [B] iff [A∨B] = [B]
iff `ACTω A ∨B ⇒ B iff `ACTω A⇒ B. If 6`ACTω A⇒ B, then [A] 6≤ [B], so the sequent A⇒ B is
not true in model (M, µ). By (ω),M is a ∗-continuous. ut
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Formulas of the form B∗ are called ∗-formulas. We define A≤n ≡ A0 ∨ · · · ∨ An, for n ∈ ω. (We set
A0 ≡ 1 and, for n ≥ 1, An is the product of n copies of A.) Let Pn(A) (resp. Nn(A)) be the formula
arising from A by a (successive) replacement of any positive (resp. negative) ∗-subformula B∗ by B≤n.
This rough formulation can be replaced by a strict, recursive definition given as follows

Pn(p) ≡ p, Nn(p) ≡ p
Pn(0) ≡ 0, Nn(0) ≡ 0
Pn(1) ≡ 1, Nn(1) ≡ 1

Pn(A1 → A2) ≡ Nn(A1)→ Pn(A2)
Nn(A1 → A2) ≡ Pn(A1)→ Nn(A2)
Pn(A2 ← A1) ≡ Pn(A2)← Nn(A1)
Nn(A2 ← A1) ≡ Nn(A2)← Pn(A1)
Pn(A1 ∧A2) ≡ Pn(A1) ∧ Pn(A2)
Nn(A1 ∧A2) ≡ Nn(A1) ∧Nn(A2)
Pn(A1 ∨A2) ≡ Pn(A1) ∨ Pn(A2)
Nn(A1 ∨A2) ≡ Nn(A1) ∨Nn(A2)

Pn(A1;A2) ≡ Pn(A1);Pn(A2)
Nn(A1;A2) ≡ Nn(A1);Nn(A2)

Pn(C∗) ≡ (Pn(C))≤n

Nn(C∗) ≡ (Nn(C))∗

We set

Pn(A1, . . . , Ak) = Pn(A1), . . . , Pn(Ak)
Nn(Γ⇒ A) = Pn(Γ)⇒ Nn(A)

Lemma 4.2. In ACTω we can restrict axioms (Id) to sequents p⇒ p such that p is a variable.

Proof:
We show that A⇒ A is provable. The proof is by induction on the complexity of A. We consider some
cases.

Case 1. A ≡ 1. We have
⇒ 1

1⇒ 1
(1L).

Case 2. A ≡ 0. We have 0⇒ 0, by (0L).
Case 3. A ≡ p. It’s obvious.
Case 4. A ≡ A1 ∨A2, A1 ∧A2, A1;A2, A1 → A2, A2 ← A1, B∗. We use the induction hypothesis

and rules (25)-(30). ut

Lemma 4.3. `ACTω Pn(A)⇒ A, `ACTω A⇒ Nn(A)

Proof:
We have `ACTω Bn ⇒ B∗. By (;L), (∨L), (1L) and (∗1R), we get `ACTω B≤n ⇒ B∗. The proof goes
by induction on the complexity of A, using (25)-(30). ut
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Fact 4.1. If m ≤ n, then `ACTω A≤m ⇒ A≤n.

Lemma 4.4. If m ≤ n then `ACTω Pm(A)⇒ Pn(A) and `ACTω Nn(A)⇒ Nm(A).

Proof:
It is similar to the proof of lemma 4.3. ut

Lemma 4.5. If m ≤ n and `ACTω Nn(Γ⇒ A), then `ACTω Nm(Γ⇒ A).

Proof:
Assume m ≤ n and `ACTω Nn(Γ ⇒ A). Let Γ = (A1, . . . , Ak). By lemma 4.4 `ACTω Pm(Γ) ⇒
Pn(Γ), which means that `ACTω Pm(Ai) ⇒ Pn(Ai) for any i = 1, . . . , k. By (CUT) and lemma 4.4,
we get Pm(Γ)⇒ Nm(A), so `ACTω Nm(Γ⇒ A). ut

The proofs of lemmas 4.6, 4.7 and 4.8 are straightforward, by the definition of Pn and Nn.

Lemma 4.6.

1. Let ◦ ∈ {∧, ; }. If Pn(A) ≡ B1 ◦ B2, then there exist A1, A2 such that A ≡ A1 ◦ A2 and
Pn(Ai) ≡ Bi, for i = 1, 2.

2. If A is not a ∗-formula and Pn(A) ≡ B1 ∨B2, then there exist A1, A2 such that A ≡ A1 ∨A2 and
Pn(Ai) ≡ Bi, for i = 1, 2.

3. If Pn(A) ≡ B1 → B2 (resp. Pn(A) ≡ B2 ← B1), then there exist A1, A2 such that A ≡ A1 →
A2 (resp. A ≡ A2 ← A1) and Nn(A1) ≡ B1, Pn(A2) ≡ B2.

Lemma 4.7.

1. Let ◦ ∈ {∧,∨, ; }. If Nn(A) ≡ B1 ◦ B2, then there exist A1, A2 such that A ≡ A1 ◦ A2 and
Nn(Ai) ≡ Bi, for i = 1, 2.

2. If Nn(A) ≡ B∗, then there exists C such that A ≡ C∗ and Nn(C) ≡ B.

3. If Nn(A) ≡ B1 → B2 (resp. Nn(A) ≡ B2 ← B1), then there exist A1, A2 such that A ≡ A1 →
A2 (resp. A ≡ A2 ← A1) and Pn(A1) ≡ B1, Nn(A2) ≡ B2.

Lemma 4.8.

1. If A is not a ∗-formula and Pn(A) ≡ 1, then A ≡ 1.

2. If Pn(A) ≡ p (resp. Pn(A) ≡ 0), then A ≡ p (resp. A ≡ 0).

3. If Nn(A) ≡ p (resp. Nn(A) ≡ 0, Nn(A) ≡ 1), then A ≡ p (resp. A ≡ 0, A ≡ 1).

All rules of ACTω except the rule (ω) are said to be finitary rules.
Let X be a set of sequents. We set
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Nn(X) = {Nn(Γ⇒ A) : (Γ⇒ A) ∈ X}

The following lemma is crucial.

Lemma 4.9. Let Nn(Φ ⇒ A) be the conclusion of a finitary rule R with the set of premises X , and
assume that no formula in string Φ is a ∗-formula. Then, Φ ⇒ A is the conclusion of rule R with some
set of premises Y such that X = Nn(Y ).

Proof:
One must examine all finitary rules. We consider seven cases. Remind that Nn(Φ ⇒ A) = Pn(Φ) ⇒
Nn(A).

Case 1. Rule (∧R). The inference looks as follows:

Pn(Φ)⇒ B1 Pn(Φ)⇒ B2

Pn(Φ)⇒ B1 ∧B2

where Nn(A) ≡ B1∧B2. By lemma 4.7.1, there exist A1, A2 such that A ≡ A1∧A2 and Nn(Ai) ≡ Bi,
for i = 1, 2. The inference:

Φ⇒ A1 Φ⇒ A2

Φ⇒ A1 ∧A2

fits the scheme of (∧R). For X = {Pn(Φ) ⇒ B1, Pn(Φ) ⇒ B2}, Y = {Φ ⇒ A1, Φ ⇒ A2}, we get
X = Nn(Y ).

Case 2. Rule (;R). The inference looks as follows:

Pn(Φ1)⇒ B1 Pn(Φ2)⇒ B2

Pn(Φ1), Pn(Φ2)⇒ B1;B2

where Φ = Φ1Φ2 and Nn(A) ≡ B1;B2. By lemma 4.7.1, there exist A1, A2 such that A ≡ A1;A2 and
Nn(Ai) ≡ Bi, for i = 1, 2. The inference:

Φ1 ⇒ A1 Φ2 ⇒ A2

Φ⇒ A1;A2

fits the scheme of (;R). For X = {Pn(Φ1)⇒ B1, Pn(Φ2)⇒ B2}, Y = {Φ1 ⇒ A1, Φ2 ⇒ A2}, we get
X = Nn(Y ).

Case 3. Rule (;L). The inference looks as follows:

Γ1, B, C, Γ2 ⇒ Nn(A)
Γ1, B;C,Γ2 ⇒ Nn(A)

Hence Φ = Φ1DΦ2, where Pn(Φ1) ≡ Γ1, Pn(Φ2) ≡ Γ2 and Pn(D) ≡ B;C. By lemma 4.6.1, there
exist B

′
, C

′
such that D ≡ B

′
;C

′
and Pn(B

′
) ≡ B, Pn(C

′
) ≡ C. The inference:

Φ1, B
′
, C

′
,Φ2 ⇒ A

Φ1, B
′ ;C ′ ,Φ2 ⇒ A

fits the scheme of (;L). For X = {Γ1, B, C, Γ2 ⇒ Nn(A)}, Y = {Φ1, B
′
, C

′
,Φ2 ⇒ A}, we get

X = Nn(Y ).
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Case 4. Rule (→R). The inference looks as follows:

B1, Pn(Φ)⇒ B2

Pn(Φ)⇒ B1 → B2

where Nn(A) ≡ B1 → B2. By lemma 4.7.3, there exist A1, A2 such that A ≡ A1 → A2 and
Pn(A1) ≡ B1, Nn(A2) ≡ B2. The inference:

A1,Φ⇒ A2

Φ⇒ A1 → A2

fits the scheme of (→R). For X = {B1, Pn(Φ)⇒ B2}, Y = {A1,Φ⇒ A2}, we get X = Nn(Y ).
Case 5. Rule (∗2R). The inference looks as follows:

Pn(Φ1)⇒ B, . . . , Pn(Φk)⇒ B

Pn(Φ1), . . . , Pn(Φk)⇒ B∗

where Φ = Φ1 . . .Φk and Nn(A) ≡ B∗. By lemma 4.7.2, there exists C such that A ≡ C∗ and
Nn(C) ≡ B. The inference:

Φ1 ⇒ C, . . . , Φk ⇒ C

Φ⇒ C∗

fits the scheme of (∗2R). For X = {Pn(Φ1) ⇒ B, . . . , Pn(Φk) ⇒ B}, Y = {Φ1 ⇒ C, . . . , Φk ⇒ C},
we get X = Nn(Y ).

Case 6. Rule (∨L). The inference looks as follows:

Γ1, B, Γ2 ⇒ Nn(A) Γ1, C, Γ2 ⇒ Nn(A)
Γ1, B ∨ C,Γ2 ⇒ Nn(A)

Hence Φ = Φ1DΦ2, where Pn(Φ1) ≡ Γ1, Pn(Φ2) ≡ Γ2 and Pn(D) ≡ B ∨ C. By lemma 4.6.2, there
exist B

′
, C

′
such that D ≡ B

′ ∨ C
′

and Pn(B
′
) ≡ B, Pn(C

′
) ≡ C. The inference:

Φ1, B
′
,Φ2 ⇒ A Φ1, C

′
,Φ2 ⇒ A

Φ1, B
′ ∨ C ′ ,Φ2 ⇒ A

fits the scheme of (∨L). For X = {Γ1, B, Γ2 ⇒ Nn(A), Γ1, C, Γ2 ⇒ Nn(A)}, Y = {Φ1, B
′
,Φ2 ⇒

A, Φ1, C
′
,Φ2 ⇒ A}, we get X = Nn(Y ).

Case 7. Rule (1L). The inference looks as follows:

Γ1,Γ2 ⇒ Nn(A)
Γ1, 1,Γ2 ⇒ Nn(A)

Hence Φ = Φ1DΦ2, where Pn(Φ1) ≡ Γ1, Pn(Φ2) ≡ Γ2 and Pn(D) ≡ 1. By lemma 4.8.1, D ≡ 1. The
inference:

Φ1,Φ2 ⇒ A

Φ1, 1,Φ2 ⇒ A

fits the scheme of (1L). For X = {Γ1,Γ2 ⇒ Nn(A)}, Y = {Φ1,Φ2 ⇒ A}, we get X = Nn(Y ). ut
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5. The ∗-elimination theorem

Our purpose is to prove the theorem on elimination of negative occurrences of ∗ in ACTω.

Let us introduce some auxiliary notions. The complexity of a formula is the total number of occur-
rences of symbols ∨,∧, ; ,→,←,∗ , 0, 1 in this formula.

To each sequent Γ ⇒ A we assign a string of integers c(Γ ⇒ A) ∈ ω∗ such that c(Γ ⇒ A) =
(c0, c1, . . . , cr), ci ∈ ω and cr 6= 0, where ci is the number of all occurrences of formulas of complexity
i in Γ ⇒ A, and r is the biggest complexity of a formula in the sequent. c(Γ ⇒ A) is called the com-
plexity of Γ⇒ A.

We define an ordering relation on ω∗

1. if r < s, then (c0, . . . , cr) < (d0, . . . , ds)

2. if r = s, then (c0, . . . , cr) < (d0, . . . , dr) iff cmax{i:ci 6=di} < dmax{i:ci 6=di} (strings of the same
length are arranged in the antilexicographical order).

Thus, (ω∗,≤) is a well-ordered set of type ωω, where ωω = sup{ωn : n ∈ ω}.

Lemma 5.1. If R is any instance of a rule of ACTω, then the complexity of the conclusion of R is bigger
than the complexity of each premise of R.

Theorem 5.1. [the ∗-elimination theorem]
`ACTω Γ⇒ A iff, for all n ∈ ω, `ACTω Nn(Γ⇒ A).

Proof:
(⇒) holds by lemma 4.3 and (CUT). For (⇐), we show:

(!) if 6`ACTω Γ⇒ A, then there exists n ∈ ω such that 6`ACTω Nn(Γ⇒ A)

We prove (!) by transfinite induction on c(Γ ⇒ A). Assume that (!) is true for all sequents Γ
′ ⇒ A

′

such that c(Γ
′ ⇒ A

′
) < c(Γ⇒ A). We prove (!) for Γ⇒ A. Assume 6`ACTω Γ⇒ A. Then, Γ⇒ A is

not an axiom. We consider two cases.
Case 1. Γ = Γ1, B

∗,Γ2. By (ω), there exist m ∈ ω such that 6`ACTω Γ1, B
m,Γ2 ⇒ A. Since

c(Γ1, B
m,Γ2 ⇒ A) < c(Γ ⇒ A), then, by the induction hypothesis, there exists k ∈ ω such that

6`ACTω Nk(Γ1, B
m,Γ2 ⇒ A). Denote n = max(m, k). By lemma 4.5, 6`ACTω Nn(Γ1, B

m,Γ2 ⇒ A).
Since 6`ACTω Pn(Γ1), (Pn(B))m, Pn(Γ2)⇒ Nn(A), then, by lemma 4.1, we have
6`ACTω Pn(Γ1), (Pn(B))≤n, Pn(Γ2)⇒ Nn(A). Hence 6`ACTω Nn(Γ1, B

∗,Γ2 ⇒ A).
Case 2. No formula in Γ is a ∗-formula. Let R1, . . . , Rk be all instances of rules whose conclusion

is Γ ⇒ A, and let Yi be the set of premises of Ri. From the assumption of case 2 it follows that all
rules R1, . . . , Rk are finitary and all sets Yi are finite and nonempty. Since 6`ACTω Γ ⇒ A, then in
each set Yi there exists a sequent (Φi ⇒ Ai) ∈ Yi such that 6`ACTω Φi ⇒ Ai. Since, by lemma
5.1, c(Φi ⇒ Ai) < c(Γ ⇒ A), then, by the induction hypothesis, there exists ni ∈ ω such that
6`ACTω Nni(Φi ⇒ Ai). Denote n = max{ni : 1 ≤ i ≤ k}. We show that 6`ACTω Nn(Γ ⇒ A).
Suppose that `ACTω Nn(Γ⇒ A). We consider two cases.
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Case 2.1. Nn(Γ⇒ A) is an axiom of ACTω. We consider four subcases.
(A) Nn(Γ ⇒ A) is an axiom (Id): p ⇒ p. Hence Pn(Γ) = p and Nn(A) = p. By lemma 4.8, Γ = p,
A = p, so Γ⇒ A is (Id), which is impossible.
(B) Nn(Γ⇒ A) is the axiom (1R):⇒ 1. Hence Pn(Γ) = ε, Nn(A) = 1. So, Γ = ε and, by lemma 4.8,
A = 1, so Γ⇒ A is (1R), which is impossible.
(C) Nn(Γ ⇒ A) is an axiom (∗1R): ⇒ B∗. Hence Pn(Γ) = ε and Nn(A) = B∗. So, Γ = ε and,
by lemma 4.7, there exists C such that A = C∗ and Nn(C) = B. Thus, Γ ⇒ A is (∗1R), which is
impossible.
(D) Nn(Γ ⇒ A) is an axiom (0L): Φ1, 0,Φ2 ⇒ B. Hence Γ = Γ1CΓ2, where Φi = Pn(Γi), i = 1, 2,
0 = Pn(C) and Nn(A) = B. By lemma 4.8.2, C ≡ 0, whence Γ ⇒ A is an axiom (0L), which is
impossible.

Case 2.2. Nn(Γ ⇒ A) is the conclusion of a rule R with a set of premises X such that all sequents
in X are provable in ACTω. Since Nn(Γ ⇒ A) contains no negative occurrences of ∗, then R must
be a finitary rule. By lemma 4.9, Γ ⇒ A is the conclusion of the same rule with a set of the premises
Y such that X = Nn(Y ). This instance of R is on the list R1, . . . , Rk, so Y = Yi. It follows that
there exists (Φi ⇒ Ai)∈ Yi such that 6`ACTω Nn(Φi ⇒ Ai). Since Nn(Φi ⇒ Ai) ∈ X , we get the
contradiction. ut

Corollary 5.1. The decision problem for ACTω is Π0
1.

Proof:
The relation R is Π0

1 iff there exists a recursive relation S such that

R(x)⇔ for all n ∈ ω S(n, x)

The relation S(n, Γ ⇒ A) ⇔`ACTω Nn(Γ ⇒ A) is recursive. For Nn(Γ ⇒ A) has no negative
occurrences of ∗, so it is provable in ACTω iff it is provable in ACT− (see section 2). Then, by theorem
5.1, the relation `ACTω Γ⇒ A is Π0

1. ut

Buszkowski [1] reduces the total language problem for context-free grammars to the decision prob-
lem for ACTω, which yields the Π0

1-hardness of ACTω.

Corollary 5.2. The decision problem for ACTω is Π0
1-complete.

ACT is recursively enumerable, so the inclusion ACT ⊂ ACTω is strict. Let p be a variable.
p, p∗ ⇒ p∗ belongs to ACT , but p, p∗ ⇒ p∗ is not provable in ACT−. So, the inclusion ACT− ⊂ ACT
is strict.
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