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1. Introduction

The Kozen completeness theorem [3] states that, for anyaiegxpressions;, 3, a equalss in the sense
of regular expressions iff the equality=5 is valid in all Kleene algebras. The proof is complicated; it
applies Conway-style [2] matrix representation of finit@tetautomata and basic constructions of these
automata. Krob [4] presents another approach, using iafgyistems of equations characterizing finite
state automata.

The aim of this paper is to show a natural connection betweeKbzen completeness theorem and
the finite model property of the theory of Kleene algebradiendcope of equations. Precisely, we mean
the following condition:

(FMPg) for any termsa, 3, if o= is not valid in the class of Kleene algebras, thers is not true in
some finite Kleene algebra under some assignment.
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In Section 3 we show that (FMP is a consequence of the Kozen completeness theorem (tbe pro
is routine). In section 4 we prove the converse: (FMRntails the Kozen completeness theorem. This
proof applies some properties of action algebras in theeseh®ratt [5]. In particular, an essential
lemma states that ife equalsg in the sense of regular expressions, thert is valid in all complete
action algebras (announced without proof in BuszkowsKi [1]

Thus, an independent proof of (Fy#Pwould provide a quite different proof of the Kozen complete
ness theorem, based on purely logical tools. We defer thiisttafurther research.

2. Preéiminaries

This chapter presents some preliminaries. We define twastgpalgebras, namely Kleene algebras and
action algebras. Kleene algebrd3] is an algebraic structurd=(A, +, -, x, 0, 1) with two distinguished
constants 0 and 1, two binary operatiepand-, and a unary operationsatisfying the following axioms.

a+(b+c)=(a+b)+c 1)
a+b=b+a 2
a+0=a 3)
ata=a (4)

a(bc) = (ab)e (5)
la=a (6)

al =a (7
a(b+c) = ab+ ac (8)
(a + b)c = ac + b 9)
0a = 0 (10)

a0 = 0 (11)
1+aa* <a* (12)
l+a*a<a* (13)

if az < zthena*z <z (14)
if za < zthenza® < z (15)

where< denotes the partial order oh, defined as follows:
a<bsa+b=0b (16)

The class of Kleene algebras is denoted KA. Axioms (1)-($)tksat(A, 4, 0) is an idempotent commu-
tative monoid, and axioms (5)-(7) say that, -, 1) is a monoid. Note that axioms (12)-(15) say essentialy
that the operation behaves like the asterate operator on sets of strings oefllegive transitive closure
operator on binary relations.
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We say that a Kleene algebrasiscontinuoudf it satisfies the infinitary condition:

zy*z = supxy”z a7)
n>0

wherey? = 1, y" ! = y3™. We will use the following properties of Kleene algebras:

1<a* (18)
a<a* (19)
if @ < bandc < dthenac < bd (20)
a<zandb<ziff a+b<z (22)

Pratt [5] defines aaction algebraas an algebral=(A, +, -, *, —, <, 0, 1) such thatt,-,«,0,1 are as
above, and- < are binary operations, satisfying axioms (1)-(7) and thieviong:

a<c+biffab<ciff b<a—c (22)
l+a"a*+a<a” (23)
if 14+6b+a < bthena® <b (24)

where the relatior< is as above. We use (RES) to denote the axiom (22). Operaticansd<— are called
the right residuatiorandthe left residuationrespectively. Pratt [5] shows that every action algebia is
Kleene algebra.

A structure(A, -, <) where(A, -) is a semigroup and is a partial order o which satisfies the condi-
tion

(MON) if @ < bthenca < ¢b andac < be

is called apartially ordered semigroufp.o. semigroup).

Lemma2.1. Ifin a p.o. semigrouf 4, -, <), for all b,c € A, there exisinax{z : zb < ¢} andmax{z :
bz < c}, then operations» and+«— defined by

¢4+ b=max{z:2b<c}
b— c=max{z: bz <c}

satisfy (RES).

Proof:

We prove (RES). We prove thab < ciff b < a — ¢. Assumeab < c¢. Thenb € {z : az < ¢}, SO
b < a — c. Conversely assume< a — c. By (MON) the set{z : az < ¢} is a lower cone, which
means:

if 2/ < zandaz < cthenaz < c

Since(a — ¢) € {z : az < ¢}, we haveb € {z : az < c}, which yieldsab < ¢. The proof of
ab < ¢ & a < ¢+ bis symmetric. O
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Lemma 2.2. [5] Every finite Kleene algebra expands to an action algebra.

Proof:

Let A be a finite Kleene algebra. By Lemma 2.1, it suffices to show, floa all b,cc A, there exist
max{z : zb < ¢} andmax{z : bz < ¢}. Since the sefz : zb < ¢} is finite and 0 belongs to this set, we
have{z : zb < ¢} = {z1,..., 2}, fork > 1. We havez;b < cforall 1 < i < k, so by (21) we have
210+ +2zpb < ¢. SO, by (9),(21 + - - + 2;)b < ¢. Accordingly we havey +---+z; € {z: zb < ¢}.
Obviouslyz; < z; 4+ -+ z, forall 1 <i <k, soz; + -+ + 2, = max{z : zb < c}. The proof of the
existence ofnax{z : bz < ¢} is symmetric. O

A partially ordered setA, <) is calledcompletef, for every X C A, there existup X andinf X.
An action algebrad is called completeif the set(A, <) is complete. The class of complete action
algebras is denoted CACT.

Lemma 2.3. Every complete action algebra issacontinuous Kleene algebra.

Proof:
Let A be a complete action algebra. 3ds a Kleene algebra.
(1) We first show that

asup X =sup{az:z € X}
(sup X)a = sup{za : z € X}.

We use (RES). We show thatup X = sup{az : z € X}. It suffices to show that
asupX < ziffforeveryz € X ax <z

(=) is obvious, because < sup X for z € X. We prove (). Assume that, for every € X, az < z.
By (RES), foreveryr € X,z < a — z. Sosup X < a — z and, by (RES)asup X < z. The proof of
(sup X)a = sup{za : z € X} is symmetric.

(2) As a consequence, we get:

a(sup X)b = sup{azb: z € X}.

(3) Now we show thay* = sup{y" : n > 0}
Letb = sup{y™ : n > 0}. We havey" < y*, for everyn (induction onn, using (23)). Hencé < y*. By
(24), itis sufficent to show thdt+ y + bb < b. We only show thabb < b. Sincebb = sup{y" : n > 0},
hence:

bb = sup{y"b:n > 0}
= sup{y"sup{y™ :m >0} :n > 0}
= sup{sup{y"*t™ : m,n > 0}}
= sup{b}
= b
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(4) From (2) and (3), we infer:

zy*z = sup{zy"z : n > 0}
O

We fix a standard first order languageof Kleene algebras, with operation symbels,+* and indi-
vidual constants 0,1. VAR denotes the set of individualalzlgs. We also admit an additional finite set
¥ of individual constants, and the extended language is ddiit. Lower Greek characters, 3, ,. . .
represent terms of 5.

Let A be a Kleene algebra. By a model (gf) we mean a paifA, ;1) such thafy : VARUY — A
is an assignment which extends to a language homomorphissgtting:

n(0) =0
p(1) =1
o+ B) = p(er) + p(B)
p(eB) = p(e)u(B)
pla®) = p(a)”

An equalitya = S is true in model( A, i) if u(a) = p(B); as usual, we writd A, 1) = o = 3.
Eqgs(KA) denotes the set of equalities = § of languagely,, which are true in all models. X is a
class of algebras, then we writex « = §if a = g is true in all modelg.A4, 1) such thatdeXC.

Let G=(G, -, 1) be a monoid. We denotB(G)={X : X C G}. We construct a powerset algebra
P(G)=(P(G),+, -, *,0,1) such that+,-,x are operations on sets, defined as follows:

XY ={ab:ac X,beY}
X+Y=XUY

X0 ={1}

Xt = X" X forn > 0
X* — UZO:OXH
0=¢
1={1}

Fact 2.1. The powerset algebrB(G) over the monoidj is a Kleene algebra. Actuall®(G) is a com-
plete action algebra with residuation operations defindalbsvs:

X—->Y={aeG:(VbeX)baecY}
Y+ X={aeG:(Vbe X)abeY}

Let 3 be a nonempty, finite alphabeb:* denotes the set of finite strings &h Forz,y € ¥,
zy denotes the concatenation of stringandy. ¢ denotes the empty string. SubsetstSfare called
languageson 3. The algebrdX*, -, ¢) is the free monoid generated By The powerset algebra(%*)
over(X*, -, ¢) is called thealgebra of languagesn X..

In what follows we identify the alphabet with the set of additional individual constant gf.
Variable free terms oLy are calledregular expressionsn .. REG(:) denotes the set of regular ex-
pressions ort. For an assigment : VAR U X — P(X*), satisfyingL(a) = {a}, for all a € 3, and
a € REG(X), the languagé.(«) is called thdanguage denotelly the regular expressian Languages
denoted by regular expressions Brare calledregular language®n 3. Fora, § € REG(X), we say
thata andg areequal as regular expressioiisL(«) = L([3).
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3. TheKozen theorem entails FM Py

Our purpose is to show that FMHs a consequence of the Kozen completeness theorem.
An equivalence relatior- on ¥* is called acongruenceon ¥* if it satisfies the condition:

if 1 ~ Y1 and$2 ~ Y2 thenxlxg ~ Y1Y2

The cardinality of the family of equivalence classes-ois called the index of. Let L C ¥* be a
language orx.. We define a binary relation;, on 3* as follows:

z ~p, yiffforall u,w € &* (uzw € Liff uyw € L)

We say that a relatior is compatible withl, C ¥* if, forany z,y € ¥*, if z ~ y andz € L, then
y € L. The following fact is well-known.

Fact 3.1. For any language €X*, ~ is the largest congruence atf compatible with L. L is a regular
language iff~, is of finite index.

We fix regular expressions, f€ REG(YX). Let~y,...,~; denote all subterms ef, 5. We define
L; = L(v;) and, forz,y € £,z ~ yiff z ~p, y, foralli =1,... k.

Fact 3.2. The relation~ is a congruence ol* compatible with every languaggk; and it is of finite
index.

Accordingly we can construct a quotient structdire/ ~. We set:

[Z]={y e 1z ~y}
[z][y] = [zy]
1=[e]

Further, we form the powerset algetdX~*/ ~), and we consider an assigment VARU Y —
P(¥*/ ~), satisfying:

p(a) = {[al}, fora € .

Then, we have the following equalities:

n(0) =9
n(1) = {[e]}
pla+ B) = p(a) U p(B)
p(aB) = p(a)u(B)
p(a*) = p(a)*

By Fact3.2, ¥*/ ~ andP(2*/ ~) are finite algebras. The following lemma is crucial.
Lemma3.1. Foranyy € {v1,...,7}, we have

p(y) ={lz] : 2 € L()} (25)



E. Palka/On FMP of the Equational Theory of Kleene Algebras 7

Pr oof:
We show:

[z] € p(y) iff 2 € L(y)

The proof is by induction on the complexity of We consider six cases.

Case 1y =a,a € ¥. Let[z] € u(a). By the construction ofi, we havelz] = [a], SOz ~ a. Since
L(a) = {a} and~ is compatible withL(a), thenz € L(a). Letz € L(a). SinceL(a) = {a}, then
x = a. Hencelz] = [a]. But[a] € u(a), so[z] € u(a).

Case 2y = 0. Sinceu(0) = @ andL(0) = 9, thenu(0) = L(0).

Case 31y = 1. Let[z] € p(1). By the construction ofi, we havez] = [¢], soz ~ ¢ ande € L(1).
Thenz € L(1). Letz € L(1). Hencer = ¢. So[z] = [¢]. But[e] € u(1). Finally, [z] € u(1).

Case 4y = y1 +72. [z] € p(m1 +72) iff [2] € pu(m1) or [z] € u(y2) iff © € L(71) orz € L(ve) iff
z € L(m + 72).

Case 57 = . Letla] € ulye) = pln)u(). There exsy = € 3 such thate) = o)
where[y| € u(y1) and[z] € u(y2). Thus, by the induction hypothesig,€ L(vy:) andz € L(vy2), S
y2 € Lin)Lirs). Sincele] = llz] = =) thens ~ pz andyz € L()Lr) — Linra). By
compatibility, z € L(y172). Letz € L(yi1v2) = L(y1)L(7y2). There existy, z € ¥£* such thatz = yz
andy € L(v1), z € L(v2). Thus, by the induction hypothesig;] € u(v1) and[z] € u(y2). Since
z = yz, we havelz] = [yz] = [y][z] € p(n)p(r2) = n(r172). Solz] € pu(r172).

Case 6.y = n*. Let[z] € u(n*) = p(n)*. There existr > 0 such thafz] = [z4] - - [z,] and
[z;] € u(n), for everyl < i < n. Hence, by the induction hypothesis, € L(n), for everyl <i < n.
Thuszy - -z, € L(n)" C L(n*). Sincex ~ xy---xz,, thenz € L(n*). Letx € L(n*) = L(n)*.
So there exist® > 0 such thatr = z,---z, andz; € L(n), for everyl < i < n. Thus, by the
induction hypothesisz;] € u(n), for everyl < i < n. Sincezx = z; ---z,, then[z] = [z; - z,] =
[z1] -+ [zn] € p(n)™ C p(n®). Solz] € p(n*). O

Theorem 3.1. FMPx holds for Eg;(KA).

Proof:

Leta, 5 € REG(X). Assumen=3 ¢ Eqs (K A). By the Kozen theorem [3],(«) # L(3). Accordingly
L(a) — L(B) # D or L(B) — L(a) # D. We consider the first case. Letc L(«a) — L(5). By Lemma
3.1, [z] € p(a) — u(B). Consequentlys(a) # p(B), whencea = g is not true in the finite algebra

P(S*] ~). O

4, FMPy entailsthe Kozen theorem

First, we show thate andS are equal as regular expressions if and only if the equality 3 is true in
all complete action algebras, namely:

L(a) = L(IB) iff |:CACT o = ,3

We seta; ---ap = ¢, for k = 0, if treated as a string oB anda, --- a3, = 1, for & = 0, if treated as a
term of Ly;.
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Lemma4.l. Forallay,...,a; € X,k > 0and for everyn € REG(X), the following property is true
if a1---ar € L(a) then Ega a1 ar < « (26)

Proof:
The proof is by induction on the complexity of the regular gsiona.

Case 1o = 0. ThenL(0) = @. The right hand side of (26) is false, so the whole conditiantrue.

Case 2a =a,a € X. Sincea; ---a; € L(a), we havek = 1 anda; = a. Clearly,=x 4 a < a.

Case 3a = [+ 7. SOL(S+v) = L(B) U L(7). Leta; --- a, € L(a). Consider two subcases.

(3.1) ay -+ ag € L(ﬁ) By the induction hypOtheSﬂgKA ap - ap < ﬁ Since|:KA ﬁ < ﬁ + 7,
then, by transitivity, we have=x 4 a1 -+ a < S+ 7.

(3.2)ay - -+ ax € L(v). The proof is symmetric.

Case 4.a« = (. SOL(fBy) = L(B)L(y). Leta; --- a € L(a). Then, there exist € L(),
y € L(v) such that - - - ax=zy. By the induction hypothesis-x 4 z < fandi=x 4 y < v, hence by
(20), =xa 2y < By. SO=ka a1 -+ ap < (.

Case 5. = *. SoL(a) = U, L(B)". Leta; --- a; € L(a). There exist3: > 0 such that
aj --- ay € L(B)". Divide the stringa; - - - ay into n substrings. Then, there exist, ..., z, € L(5)
such thata; -+ ap = =1+ z,. If n = 0, thenk = 0, and we have=x 4 1 < §*. Letn # 0. By the
induction hypothesi$=r 4 z; < gforj = 1,...,n. By (20), we havg=g a; --- a; < ". Since
Fra " < p* thenk=gaar -+ ap < B* Finally, Fra a1 --- ap < o

Case 6 = 1. Letay ---a; € L(1). Then,k =0and=g4 1 < 1. O

Let us introduce some helpful definitions. ko REG(Y), defined(«) as follows

The numbed(«) is called thex-depthof «.
Let r(a,n) be the number of occurrences of subterfiisof expressiomn such thatd(g*) = n.
Clearly,

rla+ B,n) =r(a,n) +r(B,n)
r(aB,n) =r(a,n) +r(B,n)
r(a*,n) > r(a,n)

We definesimple expression®n X). 0,1,a (a € ) anda* (for any «) are simple expressions; if
a1,...,q, are simple expressions, then - - - a, is a simple expression.

Fact 4.1. For every regular expressianthere exist simple expressiof¥s, . .. 5, such that=x 4 o =
B1+ -+ B and, foreveryh > 1 andl < i < k, r(a,n) > (B, n).

Proof:
The proof is by induction on the complexity of the regular gsiona. Consider the following cases.
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Casela=00ra=1o0ra= (" Soais asimple expression and we assume that1, 5; = a.

Case 2.a = [ + v. By the induction hypothesis there exist simple expressjan. .., 5, and
V5., msuch that=g4 8= 1+ + By and=ga v =71 + -+ y andr(B,n) > r(B;,n), for
1 <i<k,andr(y,n) > r(yj,n),for1 <j <lI.SinceEga B+vy=01+--+0B+mn+-+,
and

r(Bi,n) < r(B,n) <r(B+y,n), foreveryl <i <k,
r(vj,n) < r(y,n) <r(B+v,n), foreveryl <j <,

then we get the thesis.

Case 3. @« = (3y. By the induction hypothesis there exist simple expressjon..., S, and
Y1,...,y suchthat=g4 8 = 1+ -+ By and=ga v = 71 + --- + v andr(B8,n) > r(6;,n),
for1 <i <k, andr(y,n) > r(yj,n), forl <j <l SinceFga (b1 4+ +0) 1+ +n) =
(B4 -+ Bim) + -+ (Bey + -+ + Ben), and

r(Bivj,n) = r(Bi,n) + r(vj,n) < r(B,n) +r(y,n) =r(By,n), foreveryl <i<kandl <j </,

then we get the thesis. 0

Definer(a) as the number of subterni® of expressior such thatl(5*) is maximal ina. If « is
x-free, thenr(a) = 0. Elser(a) = r(«, n), wheren is the biggest numbér > 1 such that(«, k) # 0.

Lemma4.2. L(O{) C L(ﬁ) iff |:C’AC’T a<p

Proof:
(«) is obvious, because the algebra of languages is in the Ck€3. The proof of &) is by induction
ond(«). Let L(a) C L(B). By Fact4.1 there exist simple expressiofs, . .., B, such that=x 4 « =
B1+ -+ Bk HenceL(a) = L(B1) U--- U L(Bk), SOL(f;) C L(S), foreveryi =1,..., k. We show
that =c o7 B; < . Consider the following cases.

Case l.d(a) = 0. By Fact4.1 d(3;) < d(«a), sod(B;) = 0. Thus everyg; is *-free, sos; = 0

orgB; = ay---a fork > 0. If ; =0, then=g4 5 < . If B; = a1 ag, then by Lemma
41 =ra Bi < B. Sincel=ga B < B, foreveryl < i < k, so=ga a < 3, and consequently
Feacr a < B.

Case 2.d(a) = m, m > 0. We fixi € {1,...,k}. By Factd.1 d(5;) < d(a). If d(53;) < d(a),
then we use the induction hypothesis. Héf;) = d(«). We switch on the second induction - ofx)
(That means: we prove the thesis ftiv) = m by induction onr(«a); actually, we substitutg; for
a). Clearly,r(5;) # 0. Let3; = = - -y, wherey; are simple expressions of the fofinl, a or §*.
There existgj € {1,...,1} such thatd(vy;) = d(3;) = m. Clearly,y; = ¢* andd(8;) = d(d) + 1.
We haveL(B;) = U,Zg L(y1 -+ 7j-16"yj+1---m) and consequently(yr -+ vj—10"yj41- %) C
L(B), for alln € w. Since eithewl(y, - - ;10" yj11 -+ ) < d(Bi), Orr(yr---vj—10"yj41 ) <
r(6), thenl=cacr i+ vj—10"vj+1---v < B, by the induction hypothesis. By Lemn2a3, we
havepu(yr -+ ¥j-16"yj4+1 - W) = SuPpey {1+ 7j-16"yj+1 - n}, in every model(A, ;1) such that
A€eCACT,; and consequently=cacr vi -« - vj—10*yj41 -y < B. Thus=cacr B; < B, which yields
Eoacr a < (3, as above. O

Lemma4.3. L(a) = L(B) iff EcacT o =
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Proof:
L(a) = L(p) iff L(a) C L(B) andL () C L(«) iff (by Lemma4.2) =cacr o < fand=cacr B <
a iff ‘:CACTQZQ- O

Theorem 4.1. FMPg entails the Kozen theorem.

Proof:

Leta, 8 € REG(X). We show: iffx 4 a = fthenL(a) # L(B). Let x4 a = B. By FMPg, there
exists a finite Kleene algebrd such that~4 o« = 3. By Lemma2.2, A is a complete action algebra.
SoFcacr a = . By Lemmad.3 L(a) # L(5). 0
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