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ul. Umultowska 87, 61-614 Poznań, Poland
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1. Introduction

The Kozen completeness theorem [3] states that, for any regular expressions�, �, � equals� in the sense
of regular expressions iff the equality�=� is valid in all Kleene algebras. The proof is complicated; it
applies Conway-style [2] matrix representation of finite state automata and basic constructions of these
automata. Krob [4] presents another approach, using infinite systems of equations characterizing finite
state automata.

The aim of this paper is to show a natural connection between the Kozen completeness theorem and
the finite model property of the theory of Kleene algebras in the scope of equations. Precisely, we mean
the following condition:

(FMPK) for any terms�, �, if �=� is not valid in the class of Kleene algebras, then�=� is not true in
some finite Kleene algebra under some assignment.�The author acknowledges the supervision of this research byProf. Wojciech Buszkowski
Address for correspondence: Faculty of Mathematics and Computer Science, Adam Mickiewicz University of Poznań, ul.
Umultowska 87, 61-614 Poznań, Poland
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In Section 3 we show that (FMPK) is a consequence of the Kozen completeness theorem (the proof
is routine). In section 4 we prove the converse: (FMPK) entails the Kozen completeness theorem. This
proof applies some properties of action algebras in the sense of Pratt [5]. In particular, an essential
lemma states that if� equals� in the sense of regular expressions, then�=� is valid in all complete
action algebras (announced without proof in Buszkowski [1]).

Thus, an independent proof of (FMPK) would provide a quite different proof of the Kozen complete-
ness theorem, based on purely logical tools. We defer this task to further research.

2. Preliminaries

This chapter presents some preliminaries. We define two types of algebras, namely Kleene algebras and
action algebras. AKleene algebra[3] is an algebraic structureA=(A;+; �; �; 0; 1) with two distinguished
constants 0 and 1, two binary operations+ and�, and a unary operation� satisfying the following axioms.a+ (b+ ) = (a+ b) +  (1)a+ b = b+ a (2)a+ 0 = a (3)a+ a = a (4)a(b) = (ab) (5)1a = a (6)a1 = a (7)a(b+ ) = ab+ a (8)(a+ b) = a+ b (9)0a = 0 (10)a0 = 0 (11)1 + aa� � a� (12)1 + a�a � a� (13)

if ax � x thena�x � x (14)

if xa � x thenxa� � x (15)

where� denotes the partial order onA, defined as follows:a � b, a+ b = b (16)

The class of Kleene algebras is denoted KA. Axioms (1)-(4) say that(A;+; 0) is an idempotent commu-
tative monoid, and axioms (5)-(7) say that(A; �; 1) is a monoid. Note that axioms (12)-(15) say essentialy
that the operation� behaves like the asterate operator on sets of strings or the reflexive transitive closure
operator on binary relations.
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We say that a Kleene algebra is�-continuousif it satisfies the infinitary condition:xy�z = supn�0 xynz (17)

wherey0 = 1, yn+1 = yyn. We will use the following properties of Kleene algebras:1 � a� (18)a � a� (19)

if a � b and � d thena � bd (20)a � x andb � x iff a+ b � x (21)

Pratt [5] defines anaction algebraas an algebraA=(A;+; �; �;!; ; 0; 1) such that+,�,�,0,1 are as
above, and!, are binary operations, satisfying axioms (1)-(7) and the following:a �  b iff ab �  iff b � a!  (22)1 + a�a� + a � a� (23)

if 1 + bb+ a � b thena� � b (24)

where the relation� is as above. We use (RES) to denote the axiom (22). Operations! and are called
the right residuationandthe left residuation, respectively. Pratt [5] shows that every action algebra isa
Kleene algebra.
A structure(A; �;�) where(A; �) is a semigroup and� is a partial order onA which satisfies the condi-
tion

(MON) if a � b thena � b anda � b
is called apartially ordered semigroup(p.o. semigroup).

Lemma 2.1. If in a p.o. semigroup(A; �;�), for all b, 2 A, there existmaxfz : zb � g andmaxfz :bz � g, then operations! and defined by b = maxfz : zb � gb!  = maxfz : bz � g
satisfy (RES).

Proof:
We prove (RES). We prove thatab �  iff b � a ! . Assumeab � . Thenb 2 fz : az � g, sob � a ! . Conversely assumeb � a ! . By (MON) the setfz : az � g is a lower cone, which
means:

if z0 � z andaz �  thenaz0 � 
Since(a ! ) 2 fz : az � g, we haveb 2 fz : az � g, which yieldsab � . The proof ofab � , a �  b is symmetric. ut
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Lemma 2.2. [5] Every finite Kleene algebra expands to an action algebra.

Proof:
Let A be a finite Kleene algebra. By Lemma 2.1, it suffices to show that, for all b,2A, there existmaxfz : zb � g andmaxfz : bz � g. Since the setfz : zb � g is finite and 0 belongs to this set, we
havefz : zb � g = fz1; : : : ; zkg, for k � 1. We havezib �  for all 1 � i � k, so by (21) we havez1b+ � � �+zkb � . So, by (9),(z1+ � � �+zk)b � . Accordingly we havez1+ � � �+zk 2 fz : zb � g.
Obviouslyzi � z1 + � � � + zk for all 1 � i � k, soz1 + � � � + zk = maxfz : zb � g. The proof of the
existence ofmaxfz : bz � g is symmetric. ut

A partially ordered set(A;�) is calledcompleteif, for everyX � A, there existsupX andinfX.
An action algebraA is calledcompleteif the set(A;�) is complete. The class of complete action
algebras is denoted CACT.

Lemma 2.3. Every complete action algebra is a�-continuous Kleene algebra.

Proof:
LetA be a complete action algebra. SoA is a Kleene algebra.

(1) We first show that a supX = supfax : x 2 Xg(supX)a = supfxa : x 2 Xg.
We use (RES). We show thata supX = supfax : x 2 Xg. It suffices to show thata supX � z iff for every x 2 X ax � z
()) is obvious, becausex � supX for x 2 X. We prove ((). Assume that, for everyx 2 X, ax � z.
By (RES), for everyx 2 X, x � a! z. SosupX � a! z and, by (RES),a supX � z. The proof of(supX)a = supfxa : x 2 Xg is symmetric.

(2) As a consequence, we get:a(supX)b = supfaxb : x 2 Xg.
(3) Now we show thaty� = supfyn : n � 0g

Let b = supfyn : n � 0g. We haveyn � y�, for everyn (induction onn, using (23)). Henceb � y�. By
(24), it is sufficent to show that1+y+bb � b. We only show thatbb � b. Sincebb = supfyn : n � 0gb,
hence: bb = supfynb : n � 0g= supfyn supfym : m � 0g : n � 0g= supfsupfyn+m : m;n � 0gg= supfbg= b
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(4) From (2) and (3), we infer: xy�z = supfxynz : n � 0g ut
We fix a standard first order languageL of Kleene algebras, with operation symbols+,�,� and indi-

vidual constants 0,1. VAR denotes the set of individual variables. We also admit an additional finite set� of individual constants, and the extended language is denotedL�. Lower Greek characters�, �, ,: : :
represent terms ofL�.

LetA be a Kleene algebra. By a model (onA) we mean a pair(A; �) such that� : V AR [ �! A
is an assignment which extends to a language homomorphism, by setting:�(0) = 0�(1) = 1�(�+ �) = �(�) + �(�)�(��) = �(�)�(�)�(��) = �(�)�

An equality� = � is true in model(A; �) if �(�) = �(�); as usual, we write(A; �) j= � = �.
Eq�(KA) denotes the set of equalities� = � of languageL�, which are true in all models. IfK is a
class of algebras, then we writej=K � = � if � = � is true in all models(A; �) such thatA2K.

Let G=(G; �; 1) be a monoid. We denoteP (G)=fX : X � Gg. We construct a powerset algebraP(G)=(P (G);+; �; �; 0; 1) such that+,�,� are operations on sets, defined as follows:XY = fab : a 2 X; b 2 Y gX + Y = X [ YX0 = f1gXn+1 = XnX for n � 0X� = S1n=0Xn
0 = Ø

1 = f1g
Fact 2.1. The powerset algebraP(G) over the monoidG is a Kleene algebra. Actually,P(G) is a com-
plete action algebra with residuation operations defined asfollows:X ! Y = fa 2 G : (8b 2 X) ba 2 Y gY  X = fa 2 G : (8b 2 X) ab 2 Y g

Let � be a nonempty, finite alphabet.�� denotes the set of finite strings on�. For x; y 2 ��,xy denotes the concatenation of stringsx andy. " denotes the empty string. Subsets of�� are called
languageson�. The algebra(��; �; ") is the free monoid generated by�. The powerset algebraP(��)
over(��; �; ") is called thealgebra of languageson�.

In what follows we identify the alphabet� with the set of additional individual constant ofL�.
Variable free terms ofL� are calledregular expressionson �. REG(�) denotes the set of regular ex-
pressions on�. For an assigmentL : V AR [ � ! P (��), satisfyingL(a) = fag, for all a 2 �, and� 2 REG(�), the languageL(�) is called thelanguage denotedby the regular expression�. Languages
denoted by regular expressions on� are calledregular languageson�. For�, � 2 REG(�), we say
that� and� areequal as regular expressionsif L(�) = L(�).
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3. The Kozen theorem entails FMPK
Our purpose is to show that FMPK is a consequence of the Kozen completeness theorem.

An equivalence relation� on�� is called acongruenceon�� if it satisfies the condition:

if x1 � y1 andx2 � y2 thenx1x2 � y1y2
The cardinality of the family of equivalence classes of� is called the index of�. LetL � �� be a

language on�. We define a binary relation�L on�� as follows:x �L y iff for all u;w 2 �� (uxw 2 L iff uyw 2 L)
We say that a relation� is compatible withL � �� if, for any x; y 2 ��, if x � y andx 2 L, theny 2 L. The following fact is well-known.

Fact 3.1. For any language L���,�L is the largest congruence on�� compatible with L. L is a regular
language iff�L is of finite index.

We fix regular expressions�, �2 REG(�). Let 1; : : : ; k denote all subterms of�, �. We defineLi = L(i) and, forx; y 2 ��, x � y iff x �Li y, for all i = 1; : : : ; k.

Fact 3.2. The relation� is a congruence on�� compatible with every languageLi and it is of finite
index.

Accordingly we can construct a quotient structure��= �. We set:[x℄ = fy 2 �� : x � yg[x℄[y℄ = [xy℄1 = ["℄
Further, we form the powerset algebraP(��= �), and we consider an assigment� : V AR [ � !P (��= �), satisfying: �(a) = f[a℄g, for a 2 �.

Then, we have the following equalities: �(0) = Ø�(1) = f["℄g�(�+ �) = �(�) [ �(�)�(��) = �(�)�(�)�(��) = �(�)�
By Fact3:2, ��= � andP(��= �) are finite algebras. The following lemma is crucial.

Lemma 3.1. For any 2 f1; : : : ; kg, we have�() = f[x℄ : x 2 L()g (25)
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Proof:
We show: [x℄ 2 �() iff x 2 L()
The proof is by induction on the complexity of. We consider six cases.

Case 1. � a, a 2 �. Let [x℄ 2 �(a). By the construction of�, we have[x℄ = [a℄, sox � a. SinceL(a) = fag and� is compatible withL(a), thenx 2 L(a). Let x 2 L(a). SinceL(a) = fag, thenx = a. Hence[x℄ = [a℄. But [a℄ 2 �(a), so[x℄ 2 �(a).
Case 2. � 0. Since�(0) = Ø andL(0) = Ø, then�(0) = L(0).
Case 3. � 1. Let [x℄ 2 �(1). By the construction of�, we have[x℄ = ["℄, sox � " and" 2 L(1).

Thenx 2 L(1). Letx 2 L(1). Hencex = ". So[x℄ = ["℄. But ["℄ 2 �(1). Finally, [x℄ 2 �(1).
Case 4. � 1 + 2. [x℄ 2 �(1 + 2) iff [x℄ 2 �(1) or [x℄ 2 �(2) iff x 2 L(1) or x 2 L(2) iffx 2 L(1 + 2).
Case 5. � 12. Let [x℄ 2 �(12) = �(1)�(2). There existy; z 2 �� such that[x℄ = [y℄[z℄,

where[y℄ 2 �(1) and [z℄ 2 �(2). Thus, by the induction hypothesis,y 2 L(1) andz 2 L(2), soyz 2 L(1)L(2). Since[x℄ = [y℄[z℄ = [yz℄, thenx � yz andyz 2 L(1)L(2) = L(12). By
compatibility,x 2 L(12). Let x 2 L(12) = L(1)L(2). There existy; z 2 �� such thatx = yz
andy 2 L(1), z 2 L(2). Thus, by the induction hypothesis,[y℄ 2 �(1) and [z℄ 2 �(2). Sincex = yz, we have[x℄ = [yz℄ = [y℄[z℄ 2 �(1)�(2) = �(12). So[x℄ 2 �(12).

Case 6. � ��. Let [x℄ 2 �(��) = �(�)�. There existsn � 0 such that[x℄ = [x1℄ � � � [xn℄ and[xi℄ 2 �(�), for every1 � i � n. Hence, by the induction hypothesis,xi 2 L(�), for every1 � i � n.
Thusx1 � � � xn 2 L(�)n � L(��). Sincex � x1 � � � xn, thenx 2 L(��). Let x 2 L(��) = L(�)�.
So there existsn � 0 such thatx = x1 � � � xn andxi 2 L(�), for every1 � i � n. Thus, by the
induction hypothesis,[xi℄ 2 �(�), for every1 � i � n. Sincex = x1 � � � xn, then[x℄ = [x1 � � � xn℄ =[x1℄ � � � [xn℄ 2 �(�)n � �(��). So[x℄ 2 �(��). ut
Theorem 3.1. FMPK holds for Eq�(KA).

Proof:
Let�, � 2REG(�). Assume�=� =2Eq�(KA). By the Kozen theorem [3],L(�) 6= L(�). AccordinglyL(�)� L(�) 6= Ø orL(�) � L(�) 6= Ø. We consider the first case. Letx 2 L(�) � L(�). By Lemma3:1, [x℄ 2 �(�) � �(�). Consequently�(�) 6= �(�), whence� = � is not true in the finite algebraP(��= �). ut
4. FMPK entails the Kozen theorem

First, we show that� and� are equal as regular expressions if and only if the equality� = � is true in
all complete action algebras, namely:L(�) = L(�) iff j=CACT � = �
We seta1 � � � ak � ", for k = 0, if treated as a string on� anda1 � � � ak � 1, for k = 0, if treated as a
term ofL�.
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Lemma 4.1. For alla1, : : : ,ak 2 �, k � 0 and for every� 2 REG(�), the following property is true

if a1 � � � ak 2 L(�) then j=KA a1 � � � ak � � (26)

Proof:
The proof is by induction on the complexity of the regular expression�.

Case 1.� � 0. ThenL(0) = Ø. The right hand side of (26) is false, so the whole conditional is true.
Case 2.� � a, a 2 �. Sincea1 � � � ak 2 L(a), we havek = 1 anda1 = a. Clearly,j=KA a � a.
Case 3.� � � + . SoL(� + ) = L(�) [ L(). Let a1 � � � ak 2 L(�). Consider two subcases.
(3.1)a1 � � � ak 2 L(�). By the induction hypothesisj=KA a1 � � � ak � �. Sincej=KA � � � + ,

then, by transitivity, we havej=KA a1 � � � ak � � + .
(3.2)a1 � � � ak 2 L(). The proof is symmetric.
Case 4.� � �. SoL(�) = L(�)L(). Let a1 � � � ak 2 L(�). Then, there existx 2 L(�),y 2 L() such thata1 � � � ak=xy. By the induction hypothesisj=KA x � � andj=KA y � , hence by

(20), j=KA xy � �. Soj=KA a1 � � � ak � �.
Case 5.� � ��. SoL(�) = S1n=0 L(�)n. Let a1 � � � ak 2 L(�). There existsn � 0 such thata1 � � � ak 2 L(�)n. Divide the stringa1 � � � ak into n substrings. Then, there existx1; : : : ; xn 2 L(�)

such thata1 � � � ak = x1 � � � xn. If n = 0, thenk = 0, and we havej=KA 1 � ��. Let n 6= 0. By the
induction hypothesisj=KA xj � � for j = 1; : : : ; n. By (20), we havej=KA a1 � � � ak � �n. Sincej=KA �n � ��, thenj=KA a1 � � � ak � ��. Finally, j=KA a1 � � � ak � �.

Case 6.� � 1. Let a1 � � � ak 2 L(1). Then,k = 0 andj=KA 1 � 1. ut
Let us introduce some helpful definitions. For� 2 REG(�), defined(�) as followsd(0) = 0d(a) = 0d(�+ �) = max(d(�); d(�))d(��) = max(d(�); d(�))d(��) = d(�) + 1

The numberd(�) is called the�-depthof �.
Let r(�; n) be the number of occurrences of subterms�� of expression� such thatd(��) = n.

Clearly, r(�+ �; n) = r(�; n) + r(�; n)r(��; n) = r(�; n) + r(�; n)r(��; n) � r(�; n)
We definesimple expressions(on�). 0; 1; a (a 2 �) and�� (for any�) are simple expressions; if�1; : : : ; �n are simple expressions, then�1 � � ��n is a simple expression.

Fact 4.1. For every regular expression� there exist simple expressions�1; : : : �k such thatj=KA � =�1 + � � �+ �k and, for everyn � 1 and1 � i � k, r(�; n) � (�i; n).
Proof:
The proof is by induction on the complexity of the regular expression�. Consider the following cases.
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Case 1.� � 0 or � � 1 or � � ��. So� is a simple expression and we assume thatk = 1; �1 � �.
Case 2.� � � + . By the induction hypothesis there exist simple expressions �1; : : : ; �k and1; : : : ; l such thatj=KA � = �1 + � � � + �k andj=KA  = 1 + � � � + l andr(�; n) � r(�i; n), for1 � i � k, andr(; n) � r(j; n), for 1 � j � l. Sincej=KA � +  = �1 + � � � + �k + 1 + � � � + l,

and r(�i; n) � r(�; n) � r(� + ; n), for every1 � i � k,r(j ; n) � r(; n) � r(� + ; n), for every1 � j � l,
then we get the thesis.

Case 3. � � �. By the induction hypothesis there exist simple expressions �1; : : : ; �k and1; : : : ; l such thatj=KA � = �1 + � � � + �k and j=KA  = 1 + � � � + l andr(�; n) � r(�i; n),
for 1 � i � k, andr(; n) � r(j; n), for 1 � j � l. Sincej=KA (�1 + � � � + �k)(1 + � � � + l) =(�11 + � � � + �1l) + � � �+ (�k1 + � � �+ �kl), andr(�ij ; n) = r(�i; n) + r(j ; n) � r(�; n) + r(; n) = r(�; n), for every1 � i � k and1 � j � l,
then we get the thesis. ut

Definer(�) as the number of subterms�� of expression� such thatd(��) is maximal in�. If � is�-free, thenr(�) = 0. Elser(�) = r(�; n), wheren is the biggest numberk � 1 such thatr(�; k) 6= 0.

Lemma 4.2. L(�) � L(�) iff j=CACT � � �
Proof:
(() is obvious, because the algebra of languages is in the classCACT. The proof of ()) is by induction
on d(�). LetL(�) � L(�). By Fact4:1 there exist simple expressions�1; : : : ; �k such thatj=KA � =�1 + � � �+ �k. HenceL(�) = L(�1) [ � � � [ L(�k), soL(�i) � L(�), for everyi = 1; : : : ; k. We show
that j=CACT �i � �. Consider the following cases.

Case 1.d(�) � 0. By Fact4:1 d(�i) � d(�), sod(�i) = 0. Thus every�i is �-free, so�i � 0
or �i � a1 � � � ak, for k � 0. If �i � 0, then j=KA �i � �. If �i � a1 � � � ak, then by Lemma4:1 j=KA �i � �. Sincej=KA �i � �, for every1 � i � k, so j=KA � � �, and consequentlyj=CACT � � �.

Case 2.d(�) � m, m > 0. We fix i 2 f1; : : : ; kg. By Fact4:1 d(�i) � d(�). If d(�i) < d(�),
then we use the induction hypothesis. Letd(�i) = d(�). We switch on the second induction - onr(�)
(That means: we prove the thesis ford(�) = m by induction onr(�); actually, we substitute�i for�). Clearly,r(�i) 6= 0. Let �i = 1 � � � l, wherei are simple expressions of the form0; 1; a or Æ�.
There existsj 2 f1; : : : ; lg such thatd(j) = d(�i) = m. Clearly,j = Æ� andd(�i) = d(Æ) + 1.
We haveL(�i) = S1n=0 L(1 � � � j�1Ænj+1 � � � l) and consequentlyL(1 � � � j�1Ænj+1 � � � l) �L(�), for all n 2 !. Since eitherd(1 � � � j�1Ænj+1 � � � l) < d(�i), or r(1 � � � j�1Ænj+1 � � � l) <r(�i), then j=CACT 1 � � � j�1Ænj+1 � � � l � �, by the induction hypothesis. By Lemma2:3, we
have�(1 � � � j�1Æ�j+1 � � � l) = supn2!f1 � � � j�1Ænj+1 � � � lg, in every model(A; �) such thatA2CACT; and consequentlyj=CACT 1 � � � j�1Æ�j+1 � � � l � �. Thusj=CACT �i � �, which yieldsj=CACT � � �, as above. ut
Lemma 4.3. L(�) = L(�) iff j=CACT � = �
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Proof:L(�) = L(�) iff L(�) � L(�) andL(�) � L(�) iff (by Lemma4:2) j=CACT � � � andj=CACT � �� iff j=CACT � = �. ut
Theorem 4.1. FMPK entails the Kozen theorem.

Proof:
Let �, � 2 REG(�). We show: if6j=KA � = � thenL(�) 6= L(�). Let 6j=KA � = �. By FMPK , there
exists a finite Kleene algebraA such that6j=A � = �. By Lemma2:2, A is a complete action algebra.
So 6j=CACT � = �. By Lemma4:3 L(�) 6= L(�). ut
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